Divisible Fibonacci Numbers

The Fibonacci sequence is defined by : $f_{n}=n$ for $n<2$, and $f_{n}=f_{n-1}+f_{n-2}$ for $n>1$.
$f=(0,1,1,2,3,5,8, \ldots)$
You have to count how many terms are divisible by a given integer in the beginning of the sequence.

Input

The first line of input contains one integer: T the number of test cases.
On each of the next T lines, your are given three integers: a, b, and k.

Output

For each test case, you have to print the number of term f_{n} that are divisible by k, for n in $\left[0 . . a^{b}\right]$.
As the result may be a big number, simply output your result modulo $10^{9}+7$

Example

Input:

3
323
238
916

Output:

3
2
1
Explanation: For the first case, $a^{b}=3^{2}=9$, and the terms with rank 0 to 9 are: $\mathbf{0}, 1,1,2, \mathbf{3}, 5,8$, 13, 21, 34.
There are $\mathbf{3}$ numbers divisible by $k=3$.

Constraints

$0<\mathrm{T}<10^{\wedge} 4$
$0<a<10^{\wedge} 18$
$0<b<10^{\wedge} 18$
$1<k<10^{\wedge} 18$
To give more interest in the best part of the problem, you can assume that the maximum prime factor of k is less than or equal to 10^{6}.
Time limit is approx $4 x$ the time for my 1.4 kB PY3.4 submission (based on my old code for problem ??? you should find).
Good luck, and have fun ;-)
Edit(2017-02-11) : New time limit (after compiler changes).

