Domino's effect

Original problem statement (in Polish) can be found here.
Dominik "Domino" Domański is a scientist. He's conducting research on quantum physics. Lately, he started taking a closer look at certain very interesting effect, which can be observed when some quantum objects interact.

In his next experiment, he placed \mathbf{n} infinitely thin lines on the table, perpendicularly to the surface, in a row. Lines have different heights, distances between the lines can also differ. (Dominik calls these lines "domino tiles"). Looking from the front, they look like \mathbf{n} segments, standing vertically on the X axis of the Cartesian coordinate system.

Domino tiles can be toppled. If a tile has a height of \mathbf{h}, it will topple other tiles at most \mathbf{h} units away. More precisely, if tile is placed at the position \mathbf{x}, and is knocked over to the right, it will topple the tiles placed at positions $\mathbf{x}+1, \mathbf{x}+2, \ldots, \mathbf{x}+\mathbf{h}$. If this tile is knocked over to the left, it will topple the tiles at positions $\mathbf{x}-1, \mathbf{x}-2, \ldots, \mathbf{x}-\mathbf{h}$.

Dominik observed a very interesting phenomenon, which he called "Domino's effect" - toppling one domino tile can cause other tiles to topple, which can in turn topple other tiles. He started to wonder how to take advantage of this effect in a best possible way. What is the minimum number of tiles that need to be toppled, in order for all the dominoes to fall?

Input

The first line contains a single integer \mathbf{t}, denoting the number of testcases. Then, testcases follow.

The description of a single testcase begins with a single integer $\mathbf{n}(1<=\mathbf{n}<=1000)$ - the number of domino tiles in an arrangement.

It is followed by \mathbf{n} integers $\mathbf{h}_{\mathbf{i}}$ - heights of subsequent tiles.

It ends with \mathbf{n} - 1 integers $\mathbf{d}_{\mathbf{i}}$ - distances between neighboring tiles.
$\left(1<=h_{i}, \mathbf{d}_{\mathbf{i}}<=10^{6}\right)$.

Output

For every testcase you should find a sequence of domino tiles, that will knock down the whole arrangement. It should begin with an integer $\mathbf{k}(1<=\mathbf{k}<=\mathbf{n})$, denoting the number of tiles to be pushed. Then, descriptions of moves should follow. One move is described by one integer $\mathbf{x}_{\mathbf{i}}$ (1 $<=\mathbf{x}_{\mathbf{i}}<=\mathbf{n}$) and one letter (either L or P). It means that during the i-th move, we topple a tile number $\mathbf{x}_{\mathbf{i}}$ (counting from 1, according to original arrangement). L means that we knock it over to the left, P means knocking over to the right.

The sequence should knock over all the tiles, while using as few moves as possible.

Example

Input:
1
6
151111
21211
Output:

2
2 P
1 L

Explanation

First we topple the domino tile number 2 (of length 5) to the right, which knocks over everything to the right of that tile. Then, we topple tile number 1 - the only one that remains.

