Dot Product Maximization

Given two vectors, $a=\left(x_{a}, y_{a}\right), b=\left(x_{b}, y_{b}\right)$, their dot product is defined as follows:
$d p(a, b)=x_{a}{ }^{*} x_{b}+y_{a}{ }^{*} y_{b}$.

Given N vectors in the plane, find a pair for each of them (among those given in the input) such that the dot product of the vector and its pair is maximal. You may pair a vector with itself too.

Input

The first line of input contains a single integer $\mathrm{N}(1<=\mathrm{N}<=200000)$.
Each of the next N lines contain a pair of real numbers, x_{i} and $y_{i}\left(0<=\left|x_{i}\right|,\left|y_{i}\right|<=100000\right)$, representing the i-th vector. x_{i} and y_{i} will be rounded to 3 decimal places.

Output

Output N lines, i -th one containing the maximal dot product for the i -th vector from the input rounded to 3 decimal places.

Example

Input:
4
0.0001 .000
0.0002 .000
1.0001 .000
0.0000 .000

Output:

2.000
4.000
2.000
0.000

Explanation: Pair the first vector with the second, the second with itself, third with itself or with the second, and the last one with any of them.

