Critical Edges

This time I will not bore you with a long and boring sentence. Give a connected graph, you must find all the edges that are critical, in other words you must find the edges which when removed divide the graph.

Input

The first line contains a integer NC ($1 \leq \mathrm{NC} \leq 200$), the number of test cases. Then follow NC test cases.

Each case begins with two integers $\mathbf{N}(1 \leq N \leq 700)$ and $\mathbf{M}(N-1 \leq M \leq N *(N-1) / 2)$, the number of nodes and the number of edges respectively. Then follow M lines, each with a pair of integers $\mathbf{a} \mathbf{b}(1 \leq a, b \leq N)$ indicate that between the node \mathbf{a} and the node \mathbf{b} there is a edge.

Output

For each test case print the list of ways to protect the following format:
Caso \# <n>
<t>
<x1> <y2>
<x2> <y2>
<xt> <yt>
Where \mathbf{n} is the case number (starting from 1), \mathbf{t} is the total of critical edges, list elements $\mathbf{x}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}$ indicates, for each line, there is a critical edge between the node x_{i} and node $y_{i}\left(1 \leq x_{i}<y_{i} \leq N\right)$. In addition, the list should be sorted in no-decreasing order first by $\mathbf{x}_{\mathbf{i}}$ and then by $\mathbf{y}_{\mathbf{i}}$. Also $\mathbf{x}_{\mathbf{i}}<$ $\mathbf{y}_{\mathbf{i}}$ must hold.

If there isn't any critical edge print: "Sin bloqueos" (quotes for clarity).

Example

Input:
3

54
12
42
23
45

13
14
21
32
42
43

Output:

Caso \#1 4
12
23
24
45
Caso \#2
2
34
45
Caso \#3
Sin bloqueos

