Critical Edges

This time I will not bore you with a long and boring sentence. Give a connected graph, you must find all the edges that are critical, in other words you must find the edges which when removed divide the graph.

Input

The first line contains a integer NC ($1 \le NC \le 200$), the number of test cases. Then follow NC test cases.

Each case begins with two integers **N** ($1 \le N \le 700$) and **M** (N-1 $\le M \le N * (N-1)/2$), the number of nodes and the number of edges respectively. Then follow M lines, each with a pair of integers **a b** ($1 \le a, b \le N$) indicate that between the node **a** and the node **b** there is a edge.

Output

For each test case print the list of ways to protect the following format:

Caso # <n> <t> <x1> <y2> <x2> <y2> ... <xt> <yt>

Where **n** is the case number (starting from 1), **t** is the total of critical edges, list elements $\mathbf{x_i} \ \mathbf{y_i}$ indicates, for each line, there is a critical edge between the node x_i and node y_i ($1 \le x_i < y_i \le N$). In addition, the list should be sorted in no-decreasing order first by $\mathbf{x_i}$ and then by $\mathbf{y_i}$. Also $\mathbf{x_i} < \mathbf{y_i}$ must hold.

If there isn't any critical edge print: "Sin bloqueos" (quotes for clarity).

Example

Input:

3		
5 4		
1 2		
4 2		
2 3		
4 5		

5 5
12
13
3 2
3 4
5 4
4 6
13
1 4
21
3 2
4 2
4 3

Output:

o #1
o #2
o #3
bloqueos