Electrical Engineering

The electrical engineers' indefatigable strive towards environmentally friendly energy production translated into the recent boom of hydro, solar, wind and geothermal power plants. While the production side seems ready, these ambitious projects have their bottleneck in the transportation and distribution: Besides the energy losses that occur during transportation over long distances, the renewable energy sources cannot provide power on demand - they must be taken as provided by nature. Used at large scale in today's networks, unreliable green energy can disrupt the balance of power grids easily and cause huge damage along with large-scale power outages.

Serious effort is thus put on researching transient and dynamic phenomena in power grids. You are offered a position in the lab for linear and planar distribution networks. Given a description of the distribution network's line impedances Z_{i}, you are to find the equivalent impedance between some couples of nodes. The knowledge of such equivalent impedances may speed up the network analysis considerably! Impedances are complex number whose real part represents the resistive line behaviour while the imaginary part stands for the capacitive (negative) or inductive (positive) characteristic. Lines are bidirectional, that is impedance (a, b) equals impedance (b, a).

It was proven that any linear and planar graph (can be drawn in a way that its edges intersect only at their endpoints) can be reduced into a single equivalent edge that represents the equivalent impedance between its ending nodes, using the following six transformations:

Empty loop reduction
Pendant edge reduction
Series reduction
Delta-wye reduction transformation
Wye-delta transformation

Now that you have all the necessary operations available, are you able to determine the equivalent impedance between several couples of nodes?

Input

The input consists of several test-cases separated by an empty line. Each test-case starts with the number of nodes $N(1<=\mathrm{N}<=100)$, the number of bidirectional connections $C(0<=\mathrm{C}<=1000)$ and the number of equivalent impedances to compute $Z(0<=Z<=10)$ on a line. Then follow C lines, each describing one bidirectional connection in the form 'EndPoint_1' 'EndPoint_2' 'Impedance'. 'EndPoint_1' and 'EndPoint_2' are in the range 1 to N and impedance has the format 're im' where re and $i m$ designate the real and imaginary parts respectively, both being real numbers d such that 10^{-3} $<|\mathrm{d}|<10^{3}$. The next Z lines each hold two integers, the indices of the nodes between which you are to compute the equivalent impedance. Input terminates on a test-case with $N=C=Z=0$, which must not be evaluated.

Output

For each couple of endpoints, output the equivalent impedance in the form 're im' where re and im designate the real and imaginary parts respectively. If the nodes are not connected, output 'no connection'. Electrical engineers will consider your result as correct if the absolute error on the real and imaginary parts is below 10^{-2}. Finish each test-case on a blank line.

Sample

Input:
5103
3112.317-0.779
5330.1070 .289
5127.447 -22.649
4215.35124 .371

55 19.63-3.549
2211.84118 .757
454.834-16.542

35 5.022-22.387
25 24.768-22.356
5227.35112 .053

12
23
33

10104
986.3617 .411
$1327.596-6.484$
$9104.735-8.282$
886.90127 .939
8414.8943 .729

54 14.311-2.422
101011.0096 .225
443.196 -32.703

109 15.282-14.799
3920.47327 .158

109
81
29
96

Output:

23.37-7.26
19.61-6.97
0.000 .00
3.79-5.46
54.4338 .09
no connection
no connection

Sample input 1

Sample input 2

