Easy Longest Increasing Subsequence

Given a list of numbers A output the length of the longest increasing subsequence. An increasing subsequence is defined as a set $\{\mathrm{iO}, \mathrm{i} 1, \mathrm{i} 2, \mathrm{i} 3, \ldots, \mathrm{ik}\}$ such that $0<=\mathrm{i} 0<\mathrm{i} 1<\mathrm{i} 2<\mathrm{i} 3<\ldots<\mathrm{ik}<\mathrm{N}$ and $A[i 0]<A[i 1]<A[i 2]<\ldots<A[i k]$. A longest increasing subsequence is a subsequence with the maximum k (length).
i.e. in the list $\{33,11,22,44\}$
the subsequence $\{33,44\}$ and $\{11\}$ are increasing subsequences while $\{11,22,44\}$ is the longest increasing subsequence.

Input

First line contain one number $\mathrm{N}(1<=\mathrm{N}<=10)$ the length of the list A .
Second line contains N numbers ($1<=$ each number <=20), the numbers in the list A separated by spaces.

Output

One line containing the lenght of the longest increasing subsequence in A.

Example

Input:
5
14243
Output:
3

