Elegant Permuted Sum

Special Thanks: Jane Alam Jan
*At moment in University of Texas at San Antonio - USA
You will be given \mathbf{n} integers $\mathbf{A}_{\mathbf{1}} \mathbf{A}_{\mathbf{2}} \mathbf{A}_{\mathbf{3}} \ldots \mathbf{A}_{\mathbf{n}}$. Find a permutation of these \mathbf{n} integers so that summation of the absolute differences between adjacent elements is maximized.

Suppose $\mathbf{n = 4}$ and the given integers are 4215 . The permutation 2514 yields the maximum summation. For this permutation sum $=a b s(2-5)+a b s(5-1)+a b s(1-4)=3+4+3=10$.

Of all the $\mathbf{2 4}$ permutations, you won't get any summation whose value exceeds $\mathbf{1 0}$. We will call this value, 10, the elegant permuted sum.

Input

The first line of input is an integer $\mathbf{T}(\mathbf{T}<100)$ that represents the number of test cases. Each case consists of a line that starts with $\mathbf{n}(1<\mathbf{n}<51)$ followed by n non-negative integers separated by a single space. None of the elements of the given permutation will exceed 1000.

Output

For each case, output the case number followed by the elegant permuted summation.

Example

Input:

3
44215
41111
2101
Output:
Case 1: 10
Case 2: 0
Case 3: 9

