Can You Make It Empty 3

Let us introduce an algorithm with a function CanEmpty() which takes a string P as a parameter and return TRUE if it is possible to make P empty, otherwise return FALSE.

String P consists of only 0 and 1 . The pseudo-code implementation of CanEmpty() function is as follows.

```
bool CanEmpty(String P)
{
    while (P has at least one substring 100)
    {
            Chose any one substring 100 in P and delete it.
    }
    if (P is empty) return TRUE;
    else return FALSE;
}
```

Now you are given a string S consisting of 0 and 1 , you have to find the length of longest substring of \mathbf{S} that can be made empty applying CanEmpty() algorithm.

As for example, let $S=1011100000100$
S has only two sub-strings (bold) which can be made empty applying CanEmpty() algorithm.
The first substring will have the delete- sequence in CanEmpty() function :
$110000->100->e m p t y$
The second substring will have the delete-sequence in CanEmpty() function:
100->empty
The length of first substring is 6 and second is 3 . So, the required answer is 6 .
Input
Input starts with an integer $\mathbf{T}(\mathbf{\leq 1 0 0})$, denoting the number of test cases.
Each case contains a string S. The size of string is at most 200000.

Output

For each test case, print the case number and required answer.

Sample Input	Output for Sample Input
2	Case 1:6
1011100000100	Case 2:0
111011	

Problem Setter: Md Abdul Alim, Dept. of Computer Science, Bangladesh University of Business \& Technology

