A Famous Equation

Mr. B wrote an addition equation such as 123+321=444 on the blackboard after class. Mr. G removes some of the digits and makes it look like " $1 ? 3+? ? 1=44$?". After Mr. B realizes some digits are missing, he wants to recover them. Unfortunately, there may be more than one way to recover the equation. For example " $1 ? 3+? ? 1=44$?" can be recovered to " $123+321=444$ " or " $143+301=444$ " and many other possible solutions. Your job is to determine the number of different possible solutions.

Input

Each test case describes a single line with an equation like $\mathbf{a}+\mathbf{b}=\mathbf{c}$ which contains exactly one plus sign + and one equal sign = with some digits are missing and replaced with ?. You may assume \mathbf{a}, \mathbf{b} and \mathbf{c} are non-negative integers, and the length of each number is no more than 9 . In the other words, the equation will contain three integers less than 1,000,000,000.

Output

For each test case, display a single line with its case number and the number of possible solutions to recover the equation.

Example

Input:

$7+1$? $=1$?
? $1+? 1=22$

Output:

Case 1: 3
Case 2: 1

Explanation

There are three solutions for the first case:
$7+10=17,7+11=18,7+12=19$
There is only one solution for the second case:
$11+11=22$
Note that $01+21=22$ is not a valid solution because extra leading zeros are not allowed.

