Euler Totient Function Depth

Lucky is fond of Number theory, one day he was solving a problem related to Euler Totient Function (phi) and found an interesting property of phi: phi $(1)=1$, and for $x>1$: $\operatorname{phi}(x)<x$. So if we define a sequence with $a_{0}=x$, and for $n>0: a_{n}=p h i\left(a_{n-1}\right)$, this sequence will be constant equal to 1 starting from some point. Lets define depth (x) as minimal n such that $a_{n}=1$.
Now he is wondering how many numbers in a given range have depth equal to given number \mathbf{k}. As you are a good programmer help Lucky with his task.

Input

Your input will consist of a single integer \mathbf{T} followed by a newline and \mathbf{T} test cases. Each test cases consists of a single line containing integers \mathbf{m}, \mathbf{n}, and \mathbf{k}.

Output

Output for each test case one line containing the count of all numbers whose depth equals to \mathbf{k} in given range [m, \mathbf{n}].

Constraints

$T<10001$
$1 \leq m \leq n \leq 10^{\wedge} 6$
$0 \leq \mathrm{k}<20$

Example

Input:

5
131
1102
1103
11003
1100000017

Output:

1
3
5
8
287876
Explanation ::suppose number is 5 ; its depth will be $3 .(5->4->2->1)$
Note ::Depth for 1 is 0.

