Even Semiprime Runs

A semiprime is a product of two primes such as $\$ 9=3 \backslash$ times $3 \$$ or $\$ 580519=41$ times $14159 \$$.
The first ten semiprimes are $\$ 4 \$$, $\$ 6 \$, \$ 9 \$, \$ 10 \$, \$ 14 \$, \$ 15 \$, \$ 21 \$, \$ 22 \$, \$ 25 \$$, and $\$ 26 \$$.
A run of semiprimes is a contiguous subsequence of semiprimes. For example, $\$ 15 \$, \$ 21 \$, \$ 22 \$$ is a run but $\$ 9 \$, \$ 14 \$, \$ 15 \$$ is not because it skips over $\$ 10 \$$.

An even run of semiprimes is a run that contains only even numbers. The first even run of length $\$ 3 \$$ is $\$ 454 \$$, $\$ 458 \$$, $\$ 466 \$$.

Your task is to find the longest even run of semiprimes between $\$ \mathrm{~N} \$$ and $\$ \mathrm{M} \$$, inclusive.

Input

The first line contains $\$ T \$(\$ 1$ Ve T Ve $20 \$)$, the number of test cases.
Each test case is one line containing the integers $\$ \mathrm{~N} \$$ and $\$ \mathrm{M} \$\left(\$ 1 \mathrm{Ve} \mathrm{N}\right.$ Ve M Ve $10^{\wedge}\{14\} \$, \$ \mathrm{M}-\mathrm{N}$ Ve 10^7\$).

The sum of the differences $\$ \mathrm{M}-\mathrm{N} \$$ over all test cases is at most $\$ 10^{\wedge} 7 \$$.

Output

Print two lines per test case. On the first line, print the length of the longest even run of semiprimes. On the second line, print the numbers in the run.

If there are multiple solutions, print the one with the smallest first number.
It is guaranteed that there is at least one even semiprime between $\$ N \$$ and $\$ M \$$.

Example

Input:

16
44
46
48
414
610
5862
1100
11000
110000
1100000
11000000
500000010000000
247425787142247425787222
247425000000247425787221
466937174866466937199999
99999999000000100000000000000

Output:

466937176054466937176058466937176066466937176078
4
99999999199498999999991995029999999919952299999999199558

Note

This problem was inspired by Zak Seidov's post in the SeqFan mailing list.

