Exchanges

Given n integer registers $r_{1}, r_{2}, \ldots, r_{n}$ we define a Compare-Exchange Instruction CE(a,b), where a, b are register indices $(1<=a<b<=n)$:
$C E(a, b)::$
if content $\left(r_{a}\right)>\operatorname{content}\left(r_{b}\right)$ then exchange the contents of registers r_{a} and r_{b};

A Compare-Exchange program (shortly CE-program) is any finite sequence of CompareExchange instructions. A CE-program is called a Minimum-Finding program if after its execution the register r_{1} always contains the smallest value among all values in the registers. Such a program is called reliable if it remains a Minimum-Finding program after removing any single Compare-Exchange instruction. Given a CE-program P, what is the smallest number of instructions that should be added at the end of program P in order to get a reliable MinimumFinding program?

For instance, consider the following CE-program for 3 registers: $\operatorname{CE}(1,2), \operatorname{CE}(2,3), \operatorname{CE}(1,2)$. In order to make this program a reliable Minimum-Finding program it is sufficient to add only two instructions: $\operatorname{CE}(1,3)$ and $C E(1,2)$.

Task

Write a program that:

- reads the description of a CE-program,
- computes the smallest number of CE-instructions that should be added to make this program a reliable Minimum-Finding program,
- writes the result.

Input

The first line of the input contains exactly one positive integer d equal to the number of data sets, $1<=\mathrm{d}<=10$. The data sets follow.

Each data set consists of exactly two consecutive lines. The first of those lines contains exactly two integers n and m separated by a single space, $2<=\mathrm{n}<=10000,0<=\mathrm{m}<=25000$. Integer n is the number of registers and integer m is the number of program instructions.

The second of those lines contains exactly $2 m$ integers separated by single spaces - the program itself. Integers $\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}$ on positions $2 \mathrm{j}-1$ and $2 \mathrm{j}, 1<=\mathrm{j}<=\mathrm{m}, 1<=\mathrm{a}_{\mathrm{j}}<\mathrm{b}_{\mathrm{j}}<=\mathrm{n}$, are parameters of the j-th instruction in the program.

Output

The output should consist of exactly d lines, one line for each data set. Line $\mathrm{i}, 1<=\mathrm{i}<=\mathrm{d}$, should contain only one integer - the smallest number of instructions that should be added at the end of the i-th input program in order to make this program a reliable Minimum-Finding program.

Example

Sample input:

1
33
122312

Sample output:

