Barn Expansion

Farmer John has $\mathrm{N}(1<=\mathrm{N}<=25,000)$ rectangular barns on his farm, all with sides parallel to the X and Y axes and integer corner coordinates in the range $0 . .1,000,000$. These barns do not overlap although they may share corners and/or sides with other barns. Since he has extra cows to milk this year, FJ would like to expand some of his barns. A barn has room to expand if it does not share a corner or a wall with any other barn. That is, FJ can expand a barn if all four of its walls can be pushed outward by at least some amount without bumping into another barn. If two barns meet at a corner, neither barn can expand. Please determine how many barns have room to expand.

Input

t - the number of test cases, then t test cases follow.
Each test case takes the following form:
The first line contains the number of rectangular barns - n.
Each of the next n lines contains:
Four space-separated integers A, B, C, and D, describing one barn. The lower-left corner of the barn is at (A, B) and the upper right corner is at (C, D).

Output

For each test case write a single integer that is the number of barns that can be expanded in a separate line

Example

Input:

1
5
0227
3558
4264
6186
0081

Output:

2

Input/Output details:

There are 5 barns. The first barn has its lower-left corner at $(0,2)$ and its upper-right corner at $(2,7)$, and so on.

Only two barns can be expanded --- the first two listed in the input. All other barns are each in contact with at least one other barn.

