
Faketorial Hashing
Are you familiar with polynomial hashing? If you are not, all the better! You don’t need to know
what polynomial hashing is, the world is better off without it. I hate polynomial hashing so much
that I found a new way to hash strings. It is called the Faketorial Hashing.

First, let’s define a function, ord(ch) = the position of ch in the alphabet + 1, where ch can be any
lowercase letter. So, ord(a) = 2, ord(b) = 3, ord(c) = 4, … ord(z) = 27.

Let fact(x) be x! or the factorial of x. A few examples, fact(1) = 1, fact(2) = 2, fact(3) = 6, fact(4) =
24, fact(5) = 120, etc. Given a string S of length N, consisting of lowercase letters only, the
Faketorial Hashing of S, is defined as below:

fake_hash(S) = fact(ord(S[0])) × fact(ord(S[1])) × fact(ord(S[2])) × …… × fact(ord(S[N - 1]))

In other words, it is the product of the factorial of the ord() value of all the characters in S (That’s
right, no modulus! Unlike the lame polynomial hashing). Not only that we have a new hashing
mechanism in place, but we would also like to crack this now. Given a string S1 consisting of
lowercase letters only, your task is to find a different string S2 consisting of lowercase letters,
such that, fake_hash(S1) = fake_hash(S2) and S1 ≠ S2.

If there are multiple possible choices for S2, you need to find the lexicographically smallest one,
or output the word “Impossible” without quotes, if it is not possible to find such a string.

Input

The first line contains an integer T, denoting the number of test cases. Each test case contains
the string S1 consisting of lowercase letters (a-z) only.

Constraints

1 ≤ T ≤ 3000
1 ≤ |S1| ≤ 30

Except for the sample, the following constraints will hold:
1 ≤ |S1| ≤ 5, for 90% of the test cases
1 ≤ |S1| ≤ 15, for 99% of the test cases

Output

For each test case, output the case number followed by the required output. Please refer to the
sample input/output section for the precise format.

Example

Input:
10
tourist
petr
mnbvmar
bmerry
xellos
sevenkplus
dragoon
zzz
snapdragon
zosovoghisktwnopqrstuvwxyzoos

Output:
Case 1: aaaaabbdnstttu
Case 2: aqst
Case 3: abmmnrv
Case 4: aaabbnrry
Case 5: aaaaaaadddlnuz
Case 6: aaaaaaabbddddnquuuz
Case 7: aaaaaaaaaaaaabdnnnt
Case 8: Impossible
Case 9: aaaaaaaaaabdnnnpst
Case 10: aaffffjnnnnqqttttuuuuxxzzzzzz

	Faketorial Hashing
	Input
	Constraints
	Output
	Example

