Fast Maximum Flow

Given a graph with $\mathrm{N}(2 \leq \mathrm{N} \leq 5,000)$ vertices numbered 1 to N and $\mathrm{M}(1 \leq \mathrm{M} \leq 30,000)$ undirected, weighted edges, compute the maximum flow / minimum cut from vertex 1 to vertex N.

Input

The first line contains the two integers N and M . The next M lines each contain three integers A , B, and C, denoting that there is an edge of capacity $C\left(1 \leq C \leq 10^{9}\right)$ between nodes A and $B(1 \leq$ $\mathrm{A}, \mathrm{B} \leq \mathrm{N}$). Note that it is possible for there to be duplicate edges, as well as an edge from a node to itself.

Output

Print a single integer (which may not fit into a 32-bit integer) denoting the maximum flow / minimum cut between 1 and N.

Example

Input:

46
123
234
312
225
343
433
Output:
5

Viewing the problem as max-flow, we may send 3 units of flow through the path 1-2-3-4 and 2 units of flow through the path 1-3-4. Viewing the problem as min-cut, we may cut the first and third edges. Either way the total is 5 .

Note: see also http://www.spoj.com/problems/MATCHING/.

