Fenwick Trees

Mr. Fenwick has an array a with many integers, and his children love to do operations on the array with their father. The operations can be a query or an update.

For each query the children say two indices I and \mathbf{r}, and their father answers back with the sum of the elements from indices I to \mathbf{r} (both included).

When there is an update, the children say an index \mathbf{i} and a value \mathbf{x}, and Fenwick will add x to a_{i} (so the new value of a_{i} is $a_{i}+x$).

Because indexing the array from zero is too obscure for children, all indices start from 1. Fenwick is now too busy to play games, so he needs your help with a program that plays with his children for him, and he gave you an input/output specification.

Input

The first line of the input contains $N\left(1 \leq N \leq 10^{6}\right)$. The second line contains N integers $a_{i}\left(-10^{9} \leq a_{i} \leq 10^{9}\right)$, the initial values of the array. The third line contains $Q\left(1 \leq Q \leq 3 \times 10^{5}\right)$, the number of operations that will be made. Each of the next Q lines contains an operation. Query operations are of the form "q I r " ($1 \leq I \leq r \leq N)$, while update operations are of the form "uix" $\left(1 \leq i \leq N,-10^{9} \leq x \leq 10^{9}\right)$.

Output

You have to print the answer for every query in a different line, in the same order of the input.

Example

Input:

10
324042 33-1-2 44
6
q 35
q 110
u 5-2
q35
u 67
q47
Output:
46
89
44
79

