3 Fibonacci sum

Problem Statement:

In mathematics the Fibonacci series or Fibonacci sequence are the numbers in the following integer sequence.

0,1,1,2,3,5,8,13,21.... By definition, the first two numbers in the Fibonacci sequence are 0 and 1, and each subsequent number is the sum of the previous two.

In mathematical terms, the sequence F_n of Fibonacci numbers is defined by the recurrence relation.

$\mathbf{F}_{n} = \mathbf{F}_{n-1} + \mathbf{F}_{n-2}$

Your task is to divide given Fibonacci number *n* by three different Fibonacci numbers (*a*, *b*, *c*) (without zero) or say that it is impossible.

Input:

Input starts with an integer *T* (*T* <= 1000), denoting the number of test cases. Each case starts with an integer *n* (0 <= $n < 10^{12}$). It is guaranteed that *n* is a Fibonacci number.

Output:

Print three required numbers: *a*, *b* and *c* (a < b < c) (without zero). *a*, *b*, *c* must be Fibonacci number and the total sum of *a*, *b*, *c* equal to *n*. If there is no answer for the test you have to print " **impossible** " (without the quotes).

Sample Input/Output:

Sample Input	Sample Output
1	125
8	

Problem setter: Anjan Biswas, Dept. of CSE

Bangladesh University of Business and Technology (BUBT)