Fibonacci Factor

Let $F(n)$ be nth fibonacci number. $F(0)=0, F(1)=1, F(2)=1, F(3)=2, F(4)=3$ and so on. Given a positive integer $n>2$, print the smallest prime number P such that P divides $F(n)$ but it does not divide any $F(k)$ smaller than $F(n)$. Maximum value of n is limited by P where $P<2^{\wedge} 64$. You should print IMPOSSIBLE if no such P exists.

Input

First line of input contains a single positive integer T denoting number of test cases. $T<=20$. Next T lines contains value of n.

Output

Output value of P corresponding to each n in separate lines.

Example

Input:
2
3
8

Output:

2
7
PS : Source Code Limit changed to 700B.

