Hard Fibonacci

The problem author is not a very nice person. He wants you to calculate the $\boldsymbol{N}^{\text {th }}$ fibonacci number, which is defined as:

$$
f(n)=\left\{\begin{array}{cc}
0 & \text { if } n=0 \\
1 & \text { if } n=1 \\
F(n-1)+F(n-2) & \text { if } n>1
\end{array}\right.
$$

Because the author is not very nice, the size of \boldsymbol{N} can be huge, really huge. The exact size of \boldsymbol{N} is in the Constraints section.

Input

The first line contains a single integer \boldsymbol{T}, the number of test cases.
The next \boldsymbol{T} lines contain a single integer \boldsymbol{N}.

Output

For each of the \boldsymbol{T} lines, output the $\boldsymbol{N}^{\text {th }}$ fibonacci number, modulo 998244353.

Example

Input:

5
0
1
1234
345639696828452375
419384601238473729475639183948326177846782649592628790267300203877
Output:
0
1
4936310
213237811
389871463

Constraints

- $0 \leq N \leq 10^{15000000}$
- $1 \leq \boldsymbol{T} \leq 100$

Notes

- The size of the file will not exceed 15MB.
- Fast input may be required.
- Fast languages like C/C++ are recommended.

