Fibonacci Counting System

English

Vietnamese

SM is specially passionate to represent integers in different counting systems.
This time, SM spent a lot of time for the Fibonacci Binary counting system.
Features of this system is that there aren't two digits 1 standing side by side.
An integer M can be expressed as

$$
M_{10}=a_{n} a_{n-1} \ldots a_{2} a_{1 F}
$$

which $\mathrm{a}_{\mathrm{i}}=1$ or $0, \mathrm{a}_{\mathrm{i}}{ }^{*} \mathrm{a}_{\mathrm{i}-1}=0$ and $\mathrm{M}=\mathrm{a}_{\mathrm{n}} \mathrm{F}_{\mathrm{n}}+\mathrm{a}_{\mathrm{n}-1} \mathrm{~F}_{\mathrm{n}-1}+\ldots+\mathrm{a}_{2} \mathrm{~F}_{2}+\mathrm{a}_{1} \mathrm{~F}_{1}$;
which $F_{0}=F_{1}=1, F_{i}=F_{i-1}+F_{i-2}$.
Example:
$1_{10}=1_{F}$
$2_{10}=10_{F}$
$3_{10}=100_{F}$
$4_{10}=101_{F}$
$5_{10}=1000_{F}$
$6_{10}=1001_{F}$
$7_{10}=1010_{F}$
SM continously wrote natural numbers 1, 2, 3... in the Fibonacci Binary counting system and got a infinite string containing 0,1 . The beginning of the string is 110100101100010011010... Looking at his result, SM wondered how many digits 1 in the first N digits of the sequence ?

Input

An integer $\mathrm{N}\left(0<=\mathrm{N}<=10^{15}\right)$.

Output

Result in integer.

Example

Input:

Output:

