Finding Maximum

One way of finding the maximum element in an array is to initialize a variable to the first element in the array, iterate through the remaining array, and update the variable whenever a value strictly greater than it is found. Assuming that the array contains N elements each in the range 1 ..K, how many such arrays exist such that the above algorithm performs exactly P updates? Initialization of the variable is not counted as an update.

For example, the possible arrays for $\mathrm{N}=4, \mathrm{~K}=3$ and $\mathrm{P}=2$ are:

1. $\{1,1,2,3\}$
2. $\{1,2,1,3\}$
3. $\{1,2,2,3\}$
4. $\{1,2,3,1\}$
5. $\{1,2,3,2\}$
6. $\{1,2,3,3\}$

Input

The first line contains T the number of test cases. There follow T lines, containing 3 space separated integers N, K and P.

Output

Output T lines, one for each test case. On each line, output the answer as asked above. Since the answers can get very big, output the answer modulo 1000000007.

Example

Sample Input:

3
432
231
341

Sample Output:

6
3
30

Constraints

$1<=T<=100$
$1<=\mathrm{n}<=100$
$1<=\mathrm{K}<=300$
$0<=\mathrm{P}<\mathrm{n}$

