Flowers

Hanadi has **N** flower pots each with a unique flower. The pots are arranged along in a line. One day, She decided to change their order under the condition that no two pots that were originally next to each other remain next to each other.

Task

write a program that is given the number of pots, calculates the number of possible orders satisfying the condition **modulo a given integer M**.

Constraints

 $1 \le N \le 2,000$ The number of pots.

 $2 \le M \le 1,000,000,000$

Input

- Line 1 contains the integer **N**, the number of flower pots.
- Line 2 contains the integer M.

Output

A single line containing one integer between 0 and M-1 (inclusive): the number of possible

orders modulo M.

Example

Input:

5

11

Output:

3

For 5 pots, there are 14 orders satisfying Hanadi's condition, assuming the original order

of pots was "ABCDE"

Then the 14 possible orders are:

ACEBD
ADBEC
BDACE
BDAEC
BECAD
CADBE
CAEBD
CEADB
CEBDA
DACEB
DBEAC
DBECA

EBDAC

ECADB

14 modulo 11 = 3

So the answer is 3.

• Number of test-cases is 28.