K Edge-disjoint Branchings

Given a directed graph, may contains repeated edges. We assume that the graph contains and only contains K edge-disjoint branchings rooted by node 0 .
A branching for a graph is a set of directed edges that from a certain root (root, in this problem, is node 0) we can find one path to every other node in the graph by only the edges in the branching. K edge-disjoint branching is K branchings that share no common edges.
Your task which is easy and funny is to find out the K branchings.

Input

The first line of input contains a single integer $\mathrm{T},(\mathrm{T}<=20)$, denoting the number of test cases. For each test case:
The first line contains two integers N and $K,(2<=N<=500,2<=K<=6)$, which is the number of the nodes in the graph and the number of edge-disjoint branchings.
Then next $(\mathrm{N}-1)^{*} \mathrm{~K}$ lines contains the information about the edges. There are 2 integers X and Y in every line, meaning there exist an edge from X to Y in the graph.

Output

You should output the branchings you have found.
For every test cases, print the number of test case at the start of output, then you should output K lines.
Each line is about a branching which contains $\mathrm{N}-1$ integers that the ID of the edges in this branching.
The ID of edges starts with 0 . Every edge will appear and only appear once in the output.
See samples for further details.

Example

Input:

2
22
01
01
32
01
02
21
12

Output:

Case 1:
0
1
Case 2:
03
12
Test data have been enhanced.

