Fractan

To play the "fraction game" corresponding to a given list $f_{1}, f_{2}, \ldots, f_{k}$ of fractions and starting integer N, you repeatedly multiply the integer you have at any stage (initially N) by the earliest f_{i} in the list for which the answer is integral. Whenever there is no such f_{i}, the game stops.

Formally, we define a sequence by $\mathrm{S}_{0}=\mathrm{N}$, and $\mathrm{S}_{\mathrm{j}+1}=\mathrm{f}_{\mathrm{i}} \mathrm{S}_{\mathrm{j}}$, if for $1<=\mathrm{i}<=\mathrm{k}$, the number $\mathrm{f}_{\mathrm{i}} \mathrm{S}_{\mathrm{j}}$ is an integer but the numbers $f_{1} S_{j}, \ldots, f_{i-1} S_{j}$ are not.

For example, if we have the list of eight fractions $f_{1}=170 / 39, f_{2}=19 / 13, f_{3}=13 / 17, f_{4}=69 / 95, f_{5}=19 / 23$, $f_{6}=1 / 19, f_{7}=13 / 7, f_{8}=1 / 3$, and start with $N=21$, we produce the (finite) sequence (21,39, 170, 130, 190, 138,114,6,2). In general, the sequence may be infinite.

Given a fraction list and a starting integer calculate a part of the defined sequence. Actually, we are interested only in the powers of 2 that appear in the sequence.

Input Specification

The input contains several test cases. Every test case starts with three integers m, N, k. You may assume that $1<=m<=40,1<=N<=1000$, and $1<=k<=100$. Then follow k fractions f_{1}, \ldots, f_{k}. For each fraction, first its numerator is given, followed by its denominator. You may assume that both are positive integers less than 1000 and their greatest common divisor is 1 . The last test case is followed by a zero.

Output Specification

For each test case output on a line m numbers e_{1}, \ldots, e_{m}, separated by one space character, such that $2^{\mathrm{e}_{1}}, \ldots, 2^{\mathrm{e}_{\mathrm{k}}}$ are the first m numbers in the defined sequence that are powers of 2 . You may assume that there are at least m powers of 2 among the first 7654321 elements of the sequence.

Sample Input

121817039191313176995192311913713
20214179178851951233829337729952377191171113131115217551 0

Sample Output

1
12357111317192329313741434753596167

