Obfuscated Property

Consider the sequence:
$0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5,1,6,5,9,4 \ldots$
This sequence is defined recursively by the formula:

- $f(2 n)=f(n)$
- $f(2 n+1)=f(n)+f(n+1)$
with the initial values $f(0)=0$ and $f(1)=1$
In 1982, Dijkstra called this sequence fusc because it possesses a curious obfuscated property: if the sum of two indices, n and m, is a power of 2 , then $f(n)$ and $f(m)$ are coprime.

The sequence of the ratios of two consecutive elements $u_{n}=f(n) / f(n+1)$ runs through all nonnegative rational numbers (in reduced form) just once!
$0,1,1 / 2,2,1 / 3,3 / 2,2 / 3,3,1 / 4,4 / 3,3 / 5,5 / 2,2 / 5,5 / 3,3 / 4,4, \ldots$
Moreover, if the terms are written as an array:
1
1,2
1,3,2,3
1,4,3,5,2,5,3,4
$1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5$
$1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,9,7,12,5,13,8,11,3,10,7,11,4,9,5,6$
then the sum of the k-th row is 3^{k-1}, each columns is an arithmetic progression, and the steps are nothing but the original sequence!

In this problem, given n, you have to find $\max \{\mathrm{f}(\mathrm{i}) ; 0<=\mathrm{i}<=\mathrm{n})\}$

Input

One single line contains $n\left(0<=n<=10^{15}\right)$

Output

One single line contains $\max \{\mathrm{f}(\mathrm{i}) ; 0<=\mathrm{i}<=\mathrm{n})\}$

Example

Input:

Output:

