Another GCD problem

A number is square-free if its prime descomposition contains no repeated factors. For example: $1001=7$ * 11 * 13 is square-free, but $20=2$ * 2 * 5 is not square-free.

Square-free numbers can encoding as binary numbers. Here are examples to illustrate:
Sequence of prime numbers 2357111317 ...

- $42=2$ * 3 * 7 <=> 1101
- $1001=7^{*} 11^{*} 13$ <=> 000111
- $10=2$ * 5 <=> 101

Your task is given two square-free integers A and B in binary representation compute gcd ($A+B$, $\mathrm{Icm}(A, B)$). If the result is a square-free number your answer should have the binary format, if the answer is 1 print "relatively prime", and if is neither of these two cases print the result in base 10.

Input

In the first line an integer $\mathrm{T}(1<=\mathrm{T}<=100)$ the number of test cases. The following 2 * T lines will appear integers A and B. The length of the integers A and B encoded in binary form must not exceed 1000 characters.

Output

For each of the T pairs A, B print in the specified format gcd ($A+B, \operatorname{lcm}(A, B)$).

Example

Input:

2
000111
101
11
011

Output:

relatively prime
01
Note: In the input may have unnecessary zeros on the right of the numbers A and B, but Your answer only must be with necessary zeros.

