Elegant Diamond

Problem

The king has hired you to make him an elegant diamond. An elegant diamond is a twodimensional object made out of digits that's symmetric about a horizontal and a vertical axis. For example, the following four shapes are elegant diamonds:

2	8	3
33	88	22
414	8	3
33		
2		

These three shapes are diamonds, but are not elegant:

2	1	3
11	12	11
1	111	313
	21	11
	1	2

These three shapes are not diamonds:

```
1 2 8 8
11222 0
    200000
```

The king will start by giving you a diamond, which may not be elegant. Your job is to make it elegant by enhancing it, adding digits on to make a bigger diamond. Because you don't want to spend too much money, you want to do it with as little cost as possible.

Definitions

A diamond of size \boldsymbol{k} is $2 \mathrm{k}-1$ lines of digits, $0-9$, separated by single spaces, organized in the following way:

- Line $i(1 \leq i \leq k)$ contains $k-i$ spaces, then i digits separated by single spaces.
- Line $\mathrm{i}(\mathrm{k}<\mathrm{i}<2 \mathrm{k})$ contains i-k spaces, then $2 k-i$ digits separated by single spaces.

An elegant diamond of size \boldsymbol{k} is a diamond of size k with the following two symmetry properties:

- Horizontal symmetry: Let c_{i} be the number of digits on line i . The $\mathrm{j}^{\text {th }}$ digit on line i (where $\mathrm{j}=1$ for the first digit) must be the same as the $\mathrm{c}_{\mathrm{i}}+1-\mathrm{j}^{\text {th }}$ digit.
- Vertical symmetry: The $\mathrm{j}^{\text {th }}$ digit on line i (where $\mathrm{i}=1$ for the first line) must be the same as the $\mathrm{j}^{\text {th }}$ digit on line $2 \mathrm{k}-\mathrm{i}$.

A diamond of size k can be enhanced by adding digits to it. The result of enhancing a diamond of size k has the following properties:

- The result is a diamond of size $\geq k$.
- The original diamond is part of the result. In other words, there exist some X and some Y such that, for all values of i and j such that the $\mathrm{j}^{\text {th }}$ character of the $\mathrm{i}^{\text {th }}$ line of the original is a digit (as opposed to a space), the $\mathrm{j}+\mathrm{X}^{\text {th }}$ character on the $\mathrm{i}+\mathrm{Y}^{\text {th }}$ line of the result is also a digit and it's the same as the $\mathrm{j}^{\text {th }}$ character on the $\mathrm{i}^{\text {th }}$ line of the original.

The cost of enhancing a diamond is equal to the number of digits in the result of the enhancement, minus the number of digits in the original diamond.

Input

The first line of the input gives the number of test cases, \mathbf{T}. \mathbf{T} test cases follow. Each test case consists of a single integer \mathbf{k} in a line on its own, followed by a diamond of size \mathbf{k}.

Output

For each test case, output one line containing "Case \#x: y", where x is the case number (starting from 1) and y is the minimum cost required to enhance the given diamond into an elegant diamond. If the diamond is already elegant, $y=0$.

Limits

$1 \leq \mathbf{T} \leq 100$.

Large dataset
$1 \leq k \leq 51$.

Sample

Input Output

4
1
0
2
1
22
1 Case \#1:0
2 Case \#2: 0
1 Case \#3: 5
12 Case \#4: 7

Explanation

There are four cases. The first two cases start as elegant diamonds of size 1 and 2, respectively, and don't need to be enhanced; so the cost is 0 . The third case can be enhanced to look like:

3
11
121
11
3
There are several possible enhancements, but this is one with the lowest possible cost, which is 5. In the fourth case we can enhance the diamond into the following elegant diamond:

9
11
636
9559
636
11
9
...for a cost of 7 .

