Adjacent Bit Counts

For a string of n bits $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \ldots \mathrm{Xn}$ the adjacent bit count of the string $(\operatorname{AdjBC}(\mathrm{x}))$ is given by

$$
X 1^{*} X 2+X 2^{*} X 3+X 3^{*} X 4+\ldots+X n-1^{*} X n
$$

which counts the number of times a 1 bit is adjacent to another 1 bit. For example:
$\operatorname{AdjBC}(011101101)=3$
$\operatorname{AdjBC}(111101101)=4$
$\operatorname{AdjBC}(010101010)=0$
Write a program which takes as input integers n and k and returns the number of bit strings x of n bits (out of 2^{n}) that satisfy $\operatorname{AdjBC}(x)=k$. For example, for 5 bit strings, there are 6 ways of getting $\operatorname{AdjBC}(x)=2$:
11100, 01110, 00111, 10111, 11101, 11011

Input

The first line of input contains a single integer P, ($1 \leq P \leq 1000$), which is the number of data sets that follow. Each data set is a single line that contains the data set number, followed by a space, followed by a decimal integer giving the number (n) of bits in the bit strings, followed by a single space, followed by a decimal integer (k) giving the desired adjacent bit count. The number of bits (n) will not be greater than 100 and the parameters n and k will be chosen so that the result will fit in a signed 32-bit integer.

Output

For each data set there is one line of output. It contains the data set number followed by a single space, followed by the number of n-bit strings with adjacent bit count equal to k.

Example

Input:
10
152
2208
33017
44024
55037
66052
77059
88073
99084
1010090
Output:
16
263426
31861225
4168212501
544874764
6160916

