Adjacent Bit Counts

For a string of n bits x1, x2, x3 ... Xn the adjacent bit count of the string (AdjBC(x)) is given by

X1*X2 + X2*X3 + X3*X4 + ... + Xn-1 * Xn

which counts the number of times a 1 bit is adjacent to another 1 bit. For example:

AdjBC(011101101) = 3 AdjBC(111101101) = 4 AdjBC(010101010) = 0

Write a program which takes as input integers n and k and returns the number of bit strings x of n bits (out of 2^n) that satisfy AdjBC(x) = k. For example, for 5 bit strings, there are 6 ways of getting AdjBC(x) = 2: 11100, 01110, 00111, 10111, 11101, 11011

Input

The first line of input contains a single integer P, $(1 \le P \le 1000)$, which is the number of data sets that follow. Each data set is a single line that contains the data set number, followed by a space, followed by a decimal integer giving the number (n) of bits in the bit strings, followed by a single space, followed by a decimal integer (k) giving the desired adjacent bit count. The number of bits (n) will not be greater than 100 and the parameters n and k will be chosen so that the result will fit in a signed 32-bit integer.

Output

For each data set there is one line of output. It contains the data set number followed by a single space, followed by the number of n-bit strings with adjacent bit count equal to k.

Example

Input:		
10		
1	52	
2	20 8	3
3	30 1	7
4	40 2	24
5	50 3	37
6	60 5	52
7	70 5	59
8	80 7	73
9	90 8	34
10 100 90		

Output:

7 22937308 8 99167 9 15476 10 23076518