Flipping Slipping of grids

Given two grids of characters , consists of characters from 'a' to 'z' only. we name two grids 'A' and 'B'.

Now, we need to find the lexicographically largest triplet <i,j,k> (Assuming that one such solution does always exists)

Given that :

$f(A, i, j, k)=B, 0<=j<k<n$ and $1<=i<=n-2$ (where ' $n * n$ ' is the size of grids)
(i.e. function 'f' operated on matrix 'A' with 'i' , 'j' and 'k' parametrs gives matrix 'B'.

Description of function ' f ' :
$f(M, i, j, k)$: function operated on matrix ' M ' does following operations in the given order.

1) Take rows from index ' 0 ' to 'i' of the given grid M and flip it, i.e.
for(each column Ci) reverse($\mathrm{A}[0 . . \mathrm{i}][\mathrm{Ci}]$)
2) Take colums from index '0' to 'j' of the grid and flip it, i.e.
for(each row Ri) reverse(A[Ri][0..j])
3) Take colums from index ' k ' to 'n-1' of the grid and flip it, i.e.
for(each row $R j$) reverse $(A[R j][k . . . n-1]$
4) Remove columns indexed ' 0 ' to ' j ' and concatenate on the right of the grid in the same order, making new grid.

Input

First line contains one integer ' n ' ($n * n$ is size of grid)
Following n lines (i.e. line numbers 2 to $n+1$) containes strings each of size ' n ' for grid ' A '.

Following n lines (i.e. line numbers $n+2$ to $2 n+1$) containes strings each of size ' n ' for grid ' B '.

Constraints:

1) $5<=n<=1000$
2) String contains only lower case alphabets

Output

Three integers (space separated) in one line representing i, j and k respectively (lexicographically largest solution).

Example

Input:
5
ooscz
hkaea
nnzth
khdlf
rejtf
fldhk
htznn
aeakh
zcsoo
ftjer
Output:
334

