2x2 Subgrid Sum Problem (generalized)

This problem is a higher constraints and generalized version of <u>KWACIK</u> (Polish) and <u>GRIDSUM2</u>.

1	3	2	3	2
2	2	1	2	1
1	3	2	3	2
3	1	2	1	2
1	3	2	3	2

You are given a $\mathbf{k} \times \mathbf{k}$ grid. You can place an integer m ($\mathbf{a} \le m \le \mathbf{b}$) in each cell.

How many ways are there to place integers in the cells such that the sum of each $2x^2$ subgrid is n?

Since the answer might be very large, output it modulo **479001600** (= **12!**).

Input

The first line contains an integer $T (1 \le T \le 10^4)$, the number of test cases.

On each of the next **T** lines, you are given four integers **k**, **a**, **b** and **n**.

 $(2 \le k \le 5, 0 \le a \le b \le 5 * 10^8, 0 \le n \le 2 * 10^9)$

Output

For each test case, output a single line containing the number of ways to place integers modulo **479001600** (= **12!**).

Example

Input:

5138

Output:

Explanation

There are 8 ways to place integers for k=3, a=1, b=2 and n=5.

Credit & Special thanks

- Bartek the original problem author
- Mitch Schwartz