D - Alphabetomials

As we all know, there is a big difference between polynomials of degree 4 and those of degree 5 . The question of the non-existence of a closed formula for the roots of general degree 5 polynomials produced the famous Galois theory, which, as far as the author sees, bears no relation to our problem here.

We consider only the multi-variable polynomials of degree up to 4 , over 26 variables, represented by the set of 26 lowercase English letters. Here is one such polynomial:
aber + aab + c
Given a string s, we evaluate the polynomial on it. The evaluation gives $p(S)$ as follows: Each variable is substituted with the number of appearances of that letter in S.

For example, take the polynomial above, and let $S=$ "abracadabra edgar". There are six a's, two b's, one c, one e, and three r's. So
$p(S)=6 * 2 * 1 * 3+6 * 6 * 2+1=109$.
Given a dictionary of distinct words that consist of only lower case letters, we call a string S a d phrase if
$\mathrm{S}=\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \ldots \mathrm{~S}_{\mathrm{d}}$ ",
where S_{i} is any word in the dictionary, for $1 \leq \mathrm{i} \leq \mathrm{d}$. i.e., S is in the form of d dictionary words separated with spaces. Given a number $\mathbf{K} \leq 10$, your task is, for each $1 \leq d \leq \mathbf{K}$, to compute the sum of $p(S)$ over all the d-phrases. Since the answers might be big, you are asked to compute the remainder when the answer is divided by 10009.

Input

The first line contains the number of cases \mathbf{T}. \mathbf{T} test cases follow. The format of each test case is: A line containing an expression p for the multi-variable polynomial, as described below in this section, then a space, then follows an integer \mathbf{K}. A line with an integer \mathbf{n}, the number of words in the dictionary. Then \mathbf{n} lines, each with a word, consists of only lower case letters. No word will be repeated in the same test case.

We always write a polynomial in the form of a sum of terms; each term is a product of variables. We write a^{t} simply as $t a^{\prime}$ s concatenated together. For example, $a^{2} b$ is written as $a a b$. Variables in each term are always lexicographically non-decreasing.

Output

For each test case, output a single line in the form
Case \#X: sum $_{1}$ sum $_{2} \ldots$ sum $_{\text {K }}$
where X is the case number starting from 1 , and $s^{2} m_{i}$ is the sum of $p(S)$, where S ranges over all i-phrases, modulo 10009.

Limits

$1 \leq \mathbf{T} \leq 100$.
The string p consists of one or more terms joined by '+'. It will not start nor end with a '+'. There will be at most 5 terms for each p.

Each term consists at least 1 and at most 4 lower case letters, sorted in non-decreasing order. No two terms in the same polynomial will be the same. Each word is non-empty, consists only of lower case English letters, and will not be longer than 50 characters. No word will be repeated in the same dictionary.

Small dataset
$1 \leq \mathbf{n} \leq 20$
$1 \leq K \leq 5$
Large dataset
$1 \leq \mathbf{n} \leq 100$
$1 \leq K \leq 10$

Sample

Input:

2
ehw+hwww 5
6
where
when
what
whether
who
whose
a+e+i+0+u 3
4
apple
orange
watermelon
banana
Output:
Case \#1: 15103275226864253
Case \#2: 1296576

