Hamster Flight 2

There is a competition of flying hamsters in Hamsterburg. Each competing hamster is thrown from a sling. The initial speed of the hamsters is V0 m/s. Free fall acceleration is g = 10 m/s2. There is no air friction. The size of the hamster and the sling are negligible. When the hamster is thrown from the sling its altitude is 0 meters. There is a number of vertical gates in the air. Each gate has a lower and an upper bound. If we mark the points directly

under each of the gates on the ground – those points are positioned in one line and on one side from the starting point. A hamster gets as many points as the amount of gates he flies through. You have to calculate the maximal amount of points that a hamster can get in one flight. It is considered that a hamster flies through the gate if he touches the bounds of the gate during the flight or flies between the bounds.

Input

The first line of the input contains number $0 < t \le 10$ the amount of test cases. The description of each test case follows. Each test starts with two integers $0 < V0 \le 1000$ – the initial speed of the hamster and $0 < n \le 20000$ – the total amount of gates. Each of the next n lines contains the description of one of the gates: three integers $0 < x \le 10000$ – the distance from the starting point to the point directly under the gate, $0 < y1 \le y2 \le 10000$ – lower and upper bound of the gate.

Output

For each test case output the maximal amount of gates a hamster can fly through in one flight on a separate line.

Example

Input:			
3			
10 2			
3	1	2	
3	2	3	
10 3			
1	1	1	
2	2	3	
3	4	6	
10 3			
1	1	2	
2	3	4	
3	5	6	

Output:

- 2
- 1
- 2