Hamster Flight 2

There is a competition of flying hamsters in Hamsterburg. Each competing hamster is thrown from a sling. The initial speed of the hamsters is $\mathrm{V} 0 \mathrm{~m} / \mathrm{s}$. Free fall acceleration is $\mathrm{g}=10 \mathrm{~m} / \mathrm{s} 2$. There is no air friction. The size of the hamster and the sling are negligible. When the hamster is thrown from the sling its altitude is 0 meters. There is a number of vertical gates in the air. Each gate has a lower and an upper bound. If we mark the points directly under each of the gates on the ground - those points are positioned in one line and on one side from the starting point. A hamster gets as many points as the amount of gates he flies through. You have to calculate the maximal amount of points that a hamster can get in one flight. It is considered that a hamster flies through the gate if he touches the bounds of the gate during the flight or flies between the bounds.

Input

The first line of the input contains number $0<t<=10$ the amount of test cases. The description of each test case follows. Each test starts with two integers $0<\mathrm{V} 0<=1000$ - the initial speed of the hamster and $0<\mathrm{n}<=20000$ - the total amount of gates. Each of the next n lines contains the description of one of the gates: three integers $0<x<=10000$ - the distance from the starting point to the point directly under the gate, $0<y 1<=y 2<=10000$ - lower and upper bound of the gate.

Output

For each test case output the maximal amount of gates a hamster can fly through in one flight on a separate line.

Example

Input:

3
102
312
323
103
111
223
346
103
112
234
356
Output:

