Play with Binary Numbers

Let S be the binary representation of an Integer. We define two functions $a(i)$ and $b(i)$ such that $a(i)=$ Number of occurrences of '1' at odd positions of S.
b(i) = Number of occurrences of '1' at even positions of S.
For example: for integer 19, $\mathrm{S}=10011$.
so, $a(19)=2$ and $b(19)=1$

Input

First line contains an integer T. T=Number of test cases. Then T lines follow On each line, you will be given three integers M,N,K.

Output

For each test case output a single integer R.
Where, R is the number of integers ' i ' between M and N (both inclusive) such that absolute difference of $a(i)$ and $b(i)$ is equal to K.
Answer of each each test case should be on separate line

Constraints

T<=50
$1<=\mathrm{M}<\mathrm{N}<=10^{\wedge} 19$
$1<=\mathrm{N}-\mathrm{M}<=10^{\wedge} 6$
$0<=\mathrm{K}<=50$

Example

Input:

1
1102
Output:
2

