Hash it!

Your task is to calculate the result of the hashing process in a table of 101 elements, containing keys that are strings of length at most 15 letters (ASCII codes ' A ',...,'z'). Implement the following operations:

- find the index of the element defined by the key (ignore, if no such element),
- insert a new key into the table (ignore insertion of the key that already exists),
- delete a key from the table (without moving the others), by marking the position in table as empty (ignore non-existing keys in the table)

When performing find, insert and delete operations define the following function:
integer Hash(string key),
which for a string $k e y=a_{1} \ldots a_{n}$ returns the value:
Hash $($ key $)=h($ key $) \bmod$ 101, where
$h(k e y)=19$ * $\left.\operatorname{ASCII}\left(a_{1}\right)^{*} 1+\ldots+\operatorname{ASCII}\left(a_{n}\right)^{*} n\right)$.
Resolve collisions using the open addressing method, i.e. try to insert the key into the table at the first free position: (Hash $\left.(k e y)+j^{2}+23^{*} j\right)$ mod 101, for $j=1, \ldots, 19$. After examining of at least 20 table entries, we assume that the insert operation cannot be performed.

Input

t [the number of test cases <=100]
n_{1} [the number of operations (one per line)[$<=1000$]
ADD:string
[or]
DEL:string [other test cases, without empty lines betwee series]

Output

For every test case you have to create a new table, insert or delete keys, and write to the output: the number of keys in the table [first line] index:key [sorted by indices]

Example

```
Input:
1
1 1
ADD:marsz
ADD:marsz
ADD:Dabrowski
ADD:z
ADD:ziemii
ADD:wloskiej
ADD:do
ADD:Polski
DEL:od
DEL:do
DEL:wloskiej
```

Output:
5
34:Dabrowski
46:Polski
63:marsz
76:ziemii
96:z

