Birthday Present

Today is problem setter's best friend Jenny's birthday. Long ago, Jenny, being a very clever girl, asked the problem setter to perform some queries on a tree but he couldn't do it. Now, he seeks your help to impress her on her birthday by answering those queries.

Recall that a tree is a connected acyclic undirected graph with \mathbf{n} nodes and $\mathbf{n - 1}$ edges. In each node there are some flowers. The two type of queries are described as:

1 u v x

2 u y
For first type, you have to calculate the minimum number of vertices needed to be visited on the path from \mathbf{v} to \mathbf{u}, starting at \mathbf{v}, to collect at least $\mathbf{x}(1<=\mathbf{x}<=\mathbf{1 e 1 8})$ flowers, where \mathbf{v} is a descendant of \mathbf{u}. Note that you cannot visit any node that is not in the path from v to u and you cannot skip any node of the path from v to that node you've chosen at last. If it's impossible to collect at least \mathbf{x} flowers visiting all the vertices from \mathbf{v} to \mathbf{u} then you have to print -1.

For second type, you have to add y(y can be negative) to the existing amount flowers in node \mathbf{u}. It is guaranteed that after this operation, flowers in a node will be non-negative and sum of flowers of all node of the tree will be at most 10^18.

Note that 1 is the root of the tree.

Input

The first line of the input contains two integers $\mathbf{n}\left(2<=\mathrm{n}<=10^{\wedge} 5\right)$ and $\mathbf{q}\left(1<=\mathrm{q}<=10^{\wedge} 5\right)$ where n is the number of vertices of the tree and q is the number of queries you have to perform.

Each of the next $\mathrm{n}-1$ lines contains two integers $\mathbf{a}(1<=\mathrm{a}<=\mathrm{n})$ and $\mathbf{b}(1<=\mathrm{b}<=\mathrm{n})$ which denote an edge between a and b. The next line contains n non-negative integers $c[1], c[2], \ldots, c[n]\left(0<=c[i]<=10^{\wedge} 13\right)$ where $c[i]$ denotes the number of flowers in i'th node. Next q lines contain queries of the format described above.

Output

For each query of the first type print minimum number of nodes you have to visit to collect at least $\mathbf{x}(1<=x<=$ $10^{\wedge} 18$) flowers. If it's impossible to collect at least \mathbf{x} flowers visiting all the vertices from \mathbf{v} to \mathbf{u} then print $\mathbf{- 1}$.

Example

Input:

65
12
13
24
25
56
23135711
11610
11612
11619
255
11623

Output:

