Lampice

LAMPICE

$2^{*} \mathrm{~N}$ light bulbs are arranged in two rows and N columns. Each light bulb can be either off or on, and all lights are initially off.
We want to turn some of them on so that they form a beautiful pattern. In one step we can change the state of a sequence of (one or more) consecutive light bulbs in the same row or column.
Given the desired pattern, write a program that finds the minimum number of steps required to form the pattern.

The following figure illustrates the seven steps needed to obtain the pattern given in the third example:

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
00000000000000000000	11100000000000000000	11100010000000000000	11100010000000000000
00000000000000000000	00000000000000000000	00000010000000000000	01111101100000000000
$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
11101101111000000000	11101101111000111110	11101101111000101110	11101101111000101010
01111101100000000000	01111101100000000000	01111101100000010000	01111101100000010100

input data
The first line of input contains an integer $N, 1 \leq N \leq 10,000$, the number of columns.
Each of the following two lines contains a sequence of N characters representing the desired final pattern.
Character ' 1 ' indicates a light bulb that should be on in the final state, while the character '0' indicates a
light bulb that should be off.
output data
The first and only line of output should contain a single integer - the minimum number of steps required.
examples
input
3
100
000
output
1
input

11011
output

3
input

20

11101101111000101010 01111101100000010100
output

7

