Help a researcher

A scientist was doing a research on some kinds of bacteria. He found that the kinds, he examined, take \mathbf{T} unit of time to grow (be mature) enough in order to can reproduce.

Also he found that each type reproduces with a constant rate which is \mathbf{N} new bacteria every \mathbf{F} unit of time.
(where $\mathbf{F}=\mathbf{T}$)

Task

write a progam that reads \mathbf{L} (number of bacteria (at the begining of the experiment)), \mathbf{M} (number of mature bacteria of them), \mathbf{T} (time of each to get mature which is also the time needed for reproducing \mathbf{N} new bacteria), \mathbf{N} (rate of reproducing per \mathbf{T} unit of time) and \mathbf{Z} (period elapsed by the experiment).

Calculate the number of bacteria after \mathbf{Z} unit of time.Regardless of life-span

Constraints

$1 \leq \mathrm{L} \leq 5$ number of bacteria (at the begining of the experiment)
$\mathbf{1} \leq \mathbf{M} \leq \mathbf{L} \quad$ number of mature bacteria
$1 \leq \mathbf{T} \leq 5$ time of each to get mature which is also the time needed for reproducing \mathbf{N} new bacteria
$1 \leq \mathbf{N} \leq 50$ rate of reproducing per \mathbf{T} unit of time
$1 \leq \mathbf{Z} / \mathbf{T} \leq 4,300$ period elapsed by the experiment

Note

\mathbf{Z} is always divisible by \mathbf{T}.

Input

- L (number of bacteria (at the begining of the experiment))
- M (number of mature bacteria of them)
- \mathbf{T} (time of each to get mature which is also the time needed for reproducing \mathbf{N} new bacteria)
- \mathbf{N} (rate of reproducing per \mathbf{T} unit of time)
- Z (period elapsed by the experiment)

Output

- the number of bacteria after \mathbf{Z} unit of time.Regardless of life-span.

Example

Input:
3
2
3
1
3

Output:

5
The experiment begins with 2 mature bacteria and one unmature bacterium. For, each of the mature bacteria reproduces after 3 units of time.
Then th total becomes 4 -as each one got a new one (2*2)-.
But, for the unmature bacterium after 3 units of time, it only become mature.
After all of that the experiment finishes with 5 bacteria.

Input
2

0

1

1
100

Output:

1146295688027634168202

