## Happy Numbers I

The process of "breaking" an integer is defined as summing the squares of its digits. For example, the result of breaking the integer $\mathbf{1 2 5}$ is $\left(\mathbf{1}^{\mathbf{2}}+\mathbf{2}^{\mathbf{2}}+\mathbf{5}^{\mathbf{2}}\right)=\mathbf{3 0}$. An integer N is happy if after "breaking" it repeatedly the result reaches 1 . If the result never reaches 1 no matter how many times the "breaking" is repeated, then N is not a happy number.

## TASK

Write a program that given an integer N , determines whether it is a happy number or not.

## CONSTRAINTS

$2 \leq \mathbf{N} \leq 2,147,483,647$

## Input

A single line containing a single integer $\mathbf{N}$.

## Output

A single line containing a single integer $\mathbf{T}$ which is the number of times the process had to be done to determine that $\mathbf{N}$ is happy, or $\mathbf{- 1}$ if $\mathbf{N}$ is not happy.

## Example

Input:
19

## Output:

4

1) $19: 1^{2}+9^{2}=82$
2) $82: 82+2^{2}=68$
3) $68: 6^{2}+8^{2}=100$
4) $100: 1^{2}+0^{2}+0^{2}=1$

The solution is 4 because we discovered that the integer 19 is happy after we repeated the process 4 times.

Input:
204

## Output:

-1
204 -> 20 -> 4 -> 16 -> 37 -> 58 -> 89 -> 145 -> 42 -> 20 -> 4 -> 16 -> 37 -> 58 -> 89 -> $145 \ldots .$.
204 is not a happy number because after breaking it several times the results start repeating so we can deduce that if we continue breaking it, the result will never reach 1 .

Number of input files is $\mathbf{3 2}$.

Don't use pre-calculated values (Don't Cheat)!!!

