Happy Numbers II

The process of "breaking" an integer is defined as summing the squares of its digits. For example, the
result of breaking the integer $\mathbf{1 2 5}$ is $(\mathbf{1 2}+\mathbf{2 2}+\mathbf{5 2})=\mathbf{3 0}$. An integer \mathbf{N} is happy if after "breaking" it
repeatedly the result reaches 1 . If the result never reaches 1 no matter how many times the "breaking" is repeated, then N is not a happy number.

TASK

Write a program that given an integer \mathbf{T} (number of test cases) and \mathbf{T} integers, determines for each number whether it is a happy number or not.

CONSTRAINTS

$1 \leq T \leq 1,080,000$

$\mathbf{2} \leq \mathbf{N} \leq 2,147,483,647$ (number for determining whether it is happy or not)

Input

- The first line contains an integer \mathbf{T}.
- next 1 ... T lines contain an integer \mathbf{N} for detemining whether it is happy or not.

Output

- T lines containing a single integer \mathbf{N} which is the number of times the process had to be done to determine that \mathbf{N} is happy, or $\mathbf{- 1}$ if \mathbf{N} is not happy.

Example

Input:

2
19
204
Output:
4
-1

1) $19: 1^{2}+9^{2}=82$
2) $82: 82+2^{2}=68$
3) $68: 6^{2}+8^{2}=100$
4) $100: 1^{2}+0^{2}+0^{2}=1$

The solution for 19 is 4 because we discovered that the integer 19 is happy after we repeated the process 4 times.

204 is not a happy number because after breaking it several times the results start repeating so we can deduce that if we continue breaking it, the result will never reach 1.

