Expected Cycle Sums

We are given a sequence S of N distinct integers. Denote by $\mathrm{S}[\mathrm{i}]$ as ith element of S .
Hardik picks up a random permutation of S, breaks it into product of disjoint cycles \& looks at cycle containing $\mathrm{S}[i]$.He notes down the sum of all element of this cycle. Call the expected value of this sum as cycleSum[i]. Your task is to find the minimum value amongst all cycleSums.

Assume all permutations of these N numbers are equally likely.

Input Format :

First line contains an integer T which denotes the number of test cases. Then follow description of T test scenarios. Each test scenario takes 2 lines. First line contains a single integer N , the size of S. Then follows second line containing N elements of S.

Output Format :

Print answer for each test case, rounded to exactly one decimal place, in one line each.

Sample Input :

2
1
1
2
12

Sample Output:

1.0
2.0

Note: Notion of cycles for any sequence is defined by using index in the sequence (1-N).

Explaination for sample output :

In first case only possible permutation is (1) So answer is trivially 1.0
In second case possible permutations are (1)(2) \& (12). As both of these are equally likely, cycleSum[1] = $1 / 2$ * $1+1 / 2$ * $(1+2)=2.0$

And cycleSum[2] $=1 / 2 * 2+1 / 2 *(1+2)=2.5$. Smaller of these is 2.0 , hence the answer.
Constraints :
$1<=$ T $<=500$
$1<=\mathrm{N}<=5000$
All elements of S are distinct integers in range 0 to $10^{\wedge} 5$

