Implement FFT and its inverse

The problem asks you to write code to implement the recursive FFT algorithm and Inverse FFT algorithm. Your program should first take an input 'T' which is the number of test cases. Each test case contains two lines. The first line contains two integers 'op' and ' n ' . If ' $o p$ ' $=0$, perform FFT, otherwise perform Inverse FFT. , ' n ' denotes the degree bound of the input polynomial. The next line contain ' n ' elements. If op $=0$,the input will be of the form $a _0, b _0, a _1, b _1, \ldots, a _n-1, b _n-$ 1. Here, the pair $a _j, b+j$ will denote the complex number $c _j=a _j+i b _j$ as the coefficient of $x^{\wedge} j$ of the input polynomial. Note that n will be an integer, and $a _j, b j$ will be floating point numbers.

If $\mathrm{op}=1$, the input that follows is $\mathrm{y} _0, z_{_} 0, y_{_} 1, z_{-} 1, \ldots y _n-1, z _n-1$. The pair $y _j, z _j$ specifies the complex number $y _j+i z _j$ to be $A\left(w^{\wedge} j\right)$ for some polynomial A, that is, it is the jth coordinate of a given DFT.

Update 1- (17/08/2017)

Make sure you output the numbers using this format , "\%.6If \%.6Ifnn", (num.real_part,num.imaginary_part) . Note that the output below contains "-0.000000". This happens when you use the given format.

Use double instead of float. Use pi = acos(-1.0) for better precision.

We are now ingoring errors $<=10^{\wedge}-3$. Please submit your code again.

Constraints

Test cases $=100$
$\mathrm{n}<=2^{\wedge} 14$
$-100<=a, b, y, j<=100$

Example Input :

2
04
001.002 .003 .00

14
$6.00-2-2-20-22$

Example output:

6.0000000 .000000
$-2.0000000 .000000$
-2.000000 2.000000
0.0000000 .000000
$1.000000-0.000000$
2.0000000 .000000
3.0000000 .000000

The first 4 lines of the output is the result of the FFT algorithm. Input $=x+2 x^{\wedge} 2+3 x^{\wedge} 3$. Ouput $=$ [6, -2-2i, -2, -2 + 2i]

The next 4 lines of the output is the result of the inverse DFT algorithm. Input = $[6,-2-2 i,-2,-2+$ 2i], Output $=x+2 x^{\wedge} 2+3 x^{\wedge} 3$

