FFT and inverse FFT

The problem asks you to write code to implement the recursive FFT algorithm and FFT inverse algorithm. Your program should first take an input 0 or 1.

If input is 0 , the following input must be accepted and the FFT algorithm must be run. The input will be of the form $n, a _0, b _0, a _1, b _1, \ldots, a _n-1, b _n-1$. Here, n denotes the degree bound of the input polynomial, and the pair $a _j, b _j$ will denote the complex number $c _j=a _j+i b j$ as the coefficient of $\mathrm{x}^{\wedge} \mathrm{j}$ of the input polynomial. Note that n will be an integer, and $\mathrm{a} _j, b \mathrm{j}$ will be floating point numbers.

If the first input is 1 , the inverse FFT algorithm must be run. The input that follows is $n, y _0, z _0$, $y_{-} 1, z_{-} 1, \ldots y _n-1, z _n-1$. The pair $y _j, z _j$ specifies the complex number $y _j+i z _j$ to be $A\left(w^{\wedge} j\right)$ for some polynomial A , that is, it is the jth coordinate of a given DFT.

Once the input is specified, your program should compute the FFT or the inverse FFT as requested and present the output in vector form.

Example Input:
04001.002 .003 .00

Example output:
$46.00-2.0-2.0-2.00-2.02 .0$

That is, the DFT of $x+2 x^{\wedge} 2+3 x^{\wedge} 3$ is the vector $[6,-2-2 i,-2,-2+2 i]$

Example Input:
14 6.0 0-2.0-2.0-2.0 $0-2.02 .0$
Example output:
4001.002 .003 .00

That is, the inverse DFT of the vector [6, $-2-2 i,-2,-2+2 i]$ is the polynomial $x+2 x^{\wedge} 2+3 x^{\wedge} 3$

