Sub array Sum2

Let $A=\{a 0, a 1, a 2, a 3, \ldots, a n-1\}$ be an array. We define a recursive operation Op on array A as follows

$$
\begin{aligned}
O p(A) & =O p(\operatorname{two}(A))+O p(o n e(A))+O p(z e r o(A)) \text { if } n>1 \\
& =A \text { otherwise }
\end{aligned}
$$

Here, zero $(A)=\{a 0, a 3, a 6, .$.$\} i.e. an array formed by elements whose indices are divisible by 3$. Similarly, one $(A)=$ $\{a 1, a 4, a 7, a 10, \ldots\}$ and $t w o(A)=\{a 2, a 5, a 8, a 11 .$.$\} . Also, + is the concatenation operation.$

For example, if $A=\{0,1,2,3,4,5\}$. Then $\operatorname{Op}(A)$ will be calculated as

$$
\begin{aligned}
O p(A) & =O p(\{2,5\})+O p(\{1,4\})+O p(\{0,3\}) \\
& =O p(\{ \})+O p(\{5\})+O p(\{2\})+O p(\{ \})+O p(\{4\})+O p(\{1\})+O p(\{ \})+O p(\{3\})+O p(\{0\}) \\
& =\{5,2,4,1,3,0\}
\end{aligned}
$$

We define an query on an array B as taking the sum of all elements bk where $\mathrm{i} \leq \mathrm{k} \leq \mathrm{j}$ and $\mathrm{I} \leq \mathrm{bk} \leq \mathrm{r}$.
We define $C=\{0,1,2, \ldots, n-1\}$. So, you are given n and q queries and to have to perform q queries on $B=O p(C)$

Input

First line contains size n of array $C .\left(n \leq 10^{\wedge} 15\right)$ -
Second line contains q, number of queries. $\left(q \leq 10^{\wedge} 5\right)$ -
Next q lines contains four integers $\mathrm{i}, \mathrm{j}, \mathrm{I}, \mathrm{r} .(\mathrm{O} \leq \mathrm{i}<\mathrm{n}, \mathrm{i} \leq \mathrm{j}<\mathrm{n}, \mathrm{O} \leq \mathrm{I}<\mathrm{n}, \mathrm{I} \leq \mathrm{r}<\mathrm{n})$

Output

You have to output q integers modulo $10^{\wedge} 9+7$ corresponding to each query on a separate line.

Example

Input:

4
1
0301

Output:

1

