Increasing Powers of K

Let's define S_{k} as the increasing sequence $a_{1}, a_{2}, a_{3}, \ldots$ consisting of all those positive integers which are powers of K or sums of distinct powers of K .

For example $S_{3}=\{1,3,4,9,10,12,13,27,28,30, \ldots\}$

Your task is given N and K find the $\mathrm{N}^{\text {th }}$ term of the sequence S_{k}.

Input

The first line of the input contains a single integer $\mathrm{T}\left(1<=\mathrm{T}<=10^{4}\right)$ representing the number of test cases. The next T lines consist of two numbers each one separated by a single space:
$\mathrm{K}(3<=\mathrm{K}<=9)$ and $\mathrm{N}\left(1<=\mathrm{N}<=10^{200}\right)$.

Output

For each test case print a single line, the $N^{t h}$ term of the sequence S_{k}.

Example

Input:
8
34
3100
43
512
67
7239
817
9500

Output:
9
981
5
150
43
958399
4097
48426822

