Chiaki With Intervals

Chiaki has a set $\$ A \$$ of $\$ n \$$ intervals, the $\$ i \$$-th of them is $\$\left[1 _i, r_{_}\right] \$$. She would like to know the number of such interval sets $\$ S$ subset $A \$$: for every interval $\$$ a $\operatorname{lin} A \$$ which is not in $\$ S \$$, there exists at least one interval $\$ b \$$ in $\$ S \$$ which has non-empty intersection with $\$ \mathrm{a} \$$. As this number may be very large, Chiaki is only interested in its remainder modulo $\$\left(10^{\wedge} 9+7\right) \$$.

Interval $\$ \mathrm{a} \$$ has intersection with interval $\$ \mathrm{~b} \$$ if there exists a real number $\$ \mathrm{x} \$$ that $\$ \mathrm{I} _$a Ve \timesVe r_a\$ and \$l_b Ve x Ver_b\$.

Input

There are multiple test cases. The first line of input contains an integer $\$ 7 \$$, indicating the number of test cases. For each test case:

The first line contains an integer $\$ n \$\left(\$ 1\right.$ Ve n Ve 2 limes $10^{\wedge} 5 \$$) -- the number of intervals.
Each of the following \$n\$ lines contains two integers \$ _ i\$ and \$r_i\$ (\$1 Ve I_i<r_i Ve 10^9\$) denoting the $\$ \mathbf{\$} \$$-th interval.

It is guaranteed that for every $\$ 1$ Ve $i<j \backslash e n \$$, $\$ 1 _i \backslash n e l _j \$$ or $\$ r _i \backslash n e r _j \$$ and that the sum of $\$ n \$$ in all test cases does not exceed \$2 limes 10^5\$.

Output

For each test case, output an integer denoting the answer.

Example

Input:

2
3
12
34
56
3
14
24
34

Output:

