Intervals

You are given n closed integer intervals $\left[a_{i}, b_{i}\right]$ and n integers c_{1}, \ldots, c_{n}.

Task

Write a program that:

- reads the number of intervals, their endpoints and integers c_{1}, \ldots, c_{n} from the standard input,
- computes the minimal size of a set Z of integers which has at least c_{i} common elements with interval $\left[a_{i}, b_{i}\right]$, for each $i=1,2, \ldots, n$,
- writes the answer to the standard output.

Input

The input begins with the integer t, the number of test cases. Then t test cases follow.
For each test case the first line of the input contains an integer n ($1<=\mathrm{n}<=50000$) - the number of intervals. The following n lines describe the intervals. Line ($\mathfrak{i}+1$) of the input contains three integers a_{i}, b_{i} and c_{i} separated by single spaces and such that $0<=a_{i}<=b_{i}<=50000$ and $1<=$ $c_{i}<=b_{i}-a_{i}+1$.

Output

For each test case the output contains exactly one integer equal to the minimal size of set Z sharing at least c_{i} elements with interval $\left[a_{i}, b_{i}\right]$, for each $i=1,2, \ldots, n$.

Example

Sample input:

1
5
373
8103
681
131
10111

Sample output:

6
Warning: enormous Input/Output data, be careful with certain languages

