A function over factors

A function f is defined over natural numbers as:
$\mathrm{f}(\mathrm{N})=\sum \mathrm{d}_{\mathrm{i}} \mu\left(\mathrm{d}_{\mathrm{i}}\right)$

Here the summation is over d_{i}, all positive integers which are factors of N .
$\mu(n)$ is the Möbius function defined in the following way: If there exists a prime p such that p^{2} is a factor of n, then $\mu(n)=0$. Otherwise, if n has an odd number of prime factors, $\mu(n)=-1$. If not, $\mu(n)=1$. Thus the first few values for $\mu(n)$ (starting from 1) are $1,-1,-1,0,-1,1,-1,0 \ldots$

Given an integer $X\left(0<=X<=10^{12}\right)$, find the smallest natural number N such that $|f(N)|>X$.

Input

The first line of the input contains T, the number of test cases ($T<=1000$). Following this are T lines, each containing an integer $X\left(0<=X<=10^{12}\right)$ corresponding to the test case.

Output

For each test case in the input, output the smallest natural number N such that $|f(N)|>X$.

Example

Input:
2
1
2

Output:

3
5

