A function over factors

A function *f* is defined over natural numbers as:

 $f(N) = \sum d_i \, \mu(d_i)$

Here the summation is over d_i, all positive integers which are factors of N.

 $\mu(n)$ is the <u>Möbius function</u> defined in the following way: If there exists a prime *p* such that p^2 is a factor of *n*, then $\mu(n)=0$. Otherwise, if *n* has an odd number of prime factors, $\mu(n)=-1$. If not, $\mu(n)=1$. Thus the first few values for $\mu(n)$ (starting from 1) are 1, -1, -1, 0, -1, 1, -1, 0...

Given an integer X (0 <= X <= 10^{12}), find the smallest natural number N such that |f(N)|>X.

Input

The first line of the input contains T, the number of test cases (T <= 1000). Following this are T lines, each containing an integer X (0 <= X <= 10^{12}) corresponding to the test case.

Output

For each test case in the input, output the smallest natural number N such that |f(N)|>X.

Example

Input:

2 1

2

Output:

3

5