Iterated Bitcount Function

Let f(x) be the number of 1's in the binary representation of x.

We can define $f^k(x)$ as f(x) for k = 1, and $f^k(k-1)(f(x))$ for k > 1.

Let $f^*(x)$ be the smallest $k \ge 1$ such that $f^k(x) = 1$.

Given N and K, how many numbers x between 1 and N inclusive have $f^*(x) = K$?

Input :

The first line contains the number of test cases T. Each of the next T lines contains two space seperated numbers N and K.

Output :

Output one line corresponding to each test case, containing the answer for the corresponding test case. Output all answers modulo 100000007.

Sample Input :

133 202

Sample Output :

3

10

Constraints : 1 <= T <= 1000

1 <= N <= 10⁵⁰⁰

1 <= K <= 10