Pixel Shuffle

AJRRIMR

e e e
P L
e e o
e

Shuffling the pixels in a bitmap image sometimes yields random looking images. However, by
repeating the shuffling enough times, one finally recovers the original images. This should be no
surprise, since "shuffling" means applying a one-to-one mapping (or permutation) over the cells
of the image, which come in finite number.

Your program should read a number n , and a series of elementary transformations that define a
"shuffling" ¢ ofn * n images. Then, your program should compute the minimal number m (m > 0) ,
such that m applications of ¥ always yield the original n * n image.

For instance if ¢ is counter-clockwise 90° rotation then m = 4.

A< V= A

Input

Test cases are given one after another, and a single 0 denotes the end of the input. For each test
case:

Input is made of two lines, the first line is number n (2 <= n <= 219 n even). The number n is the

size of images, one image is represented internally by a n * n pixel matrix (a',) , where i is the row
number and j is the column number. The pixel at the upper left corner is at row 0 and column 0.

The second line is a non-empty list of at most 32 words, separated by spaces. Valid words are
the keywords id, rot, sym, bhsym, bvsym, div and mix, or a keyword followed by -. Each
keyword key designates an elementary transform (as defined by Figure 1), and key- designates

the inverse of transform key. For instance, rot- is the inverse of counter-clockwise 90° rotation,
that is clockwise 90° rotation. Finally, the list ky, ko, ..., kp designates the compound transform ¢ _
k10ko0 ... 0kj, . For instance, "bvsym rot-" is the transform that first performs clockwise 900 rotation
and then vertical symmetry on the lower half of the image.

AR

Figure 1: Transformations of image (al)) into image (b')

id , identity. Nothing changes : bf = af .

rot , counter-clockwise 90° rotation

sym , horizontal symmetry : b = a? 177

L]

bhsym , horizontal symmetry applied to the lower
half of image : when ¢ > n/2, then b =
a® 77, Otherwise b =a.

[

bvsym , vertical symmetry applied to the lower
half of image (i > n/2)

div , division. Rows 0,2,...,n — 2 become rows
0,1,...n/2 — 1, while rows 1,3,...n — 1 be-
come rows n/2,n/24+1,...n— 1

> A P

mix ,row mix. Rows 2k and 2k 41 are interleaved.
The pixels of row 2k in the new image are

0 0 1 1 nl."'i—l nl."'ﬁ—l et

Copy Qo q1s Oogy O3qyy * Oo 505y, , While

the pixels of row 2k 4+ 1 in the new image are
nf2 nfz2 n/241 nf241 n—1 n—1

Uop 3 Qap410 Q2 2 @apyy 2 s Qo 5 Tagyg-

||,u|

Output

For each test case:

Your program should output a single line whose contents is the minimal number m (m > 0) such
that ¢ is the identity. You may assume that, for all test input, you have m < 231,

Example

Input:
256
rot- div rot div

256
bvsym div mix
0

Output:
8
63457

	Pixel Shuffle
	Input
	Output
	Example

