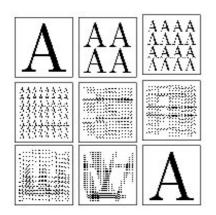
Pixel Shuffle



Shuffling the pixels in a bitmap image sometimes yields random looking images. However, by repeating the shuffling enough times, one finally recovers the original images. This should be no surprise, since "shuffling" means applying a one-to-one mapping (or permutation) over the cells of the image, which come in finite number.

Your program should read a number n , and a series of elementary transformations that define a "shuffling" ϕ of n * n images. Then, your program should compute the minimal number m (m > 0) , such that m applications of ϕ always yield the original n * n image.

For instance if ϕ is counter-clockwise 90° rotation then m = 4.

Input

Test cases are given one after another, and a single 0 denotes the end of the input. For each test case:

Input is made of two lines, the first line is number n (2 <= n <= 2^{10} , n even). The number n is the size of images, one image is represented internally by a n * n pixel matrix (a^{j}_{i}), where i is the row number and j is the column number. The pixel at the upper left corner is at row 0 and column 0.

The second line is a non-empty list of at most 32 words, separated by spaces. Valid words are the keywords **id**, **rot**, **sym**, **bhsym**, **bvsym**, **div** and **mix**, or a keyword followed by -. Each keyword **key** designates an elementary transform (as defined by Figure 1), and **key-** designates the inverse of transform **key**. For instance, **rot-** is the inverse of counter-clockwise 90° rotation, that is clockwise 90° rotation. Finally, the list $k_1, k_2, ..., k_p$ designates the compound transform $\phi = k_1 \circ k_2 \circ ... \circ k_p$. For instance, "bvsym rot-" is the transform that first performs clockwise 90° rotation and then vertical symmetry on the lower half of the image.

Figure 1: Transformations of image (a^j_i) into image (b^j_i)

id , identity. Nothing changes : $b_i^j = a_i^j$.

rot , counter-clockwise 90° rotation

- $\mathbf{sym}\,$, horizontal symmetry : $b_i^j = a_i^{n-1-j}$
- **bhsym**, horizontal symmetry applied to the lower half of image : when $i \ge n/2$, then $b_i^j = a_i^{n-1-j}$. Otherwise $b_i^j = a_i^j$.
- \mathbf{bvsym} , vertical symmetry applied to the lower half of image $(i \geq n/2)$
- div , division. Rows $0, 2, \ldots, n-2$ become rows $0, 1, \ldots n/2 1$, while rows $1, 3, \ldots n-1$ become rows $n/2, n/2 + 1, \ldots n 1$.
- **mix**, row mix. Rows 2k and 2k+1 are interleaved. The pixels of row 2k in the new image are $a_{2k}^0, a_{2k+1}^0, a_{2k}^1, a_{2k+1}^1, \cdots, a_{2k}^{n/2-1}, a_{2k+1}^{n/2-1}$, while the pixels of row 2k + 1 in the new image are $a_{2k}^{n/2}, a_{2k+1}^{n/2}, a_{2k}^{n/2+1}, a_{2k+1}^{n/2+1}, \cdots, a_{2k}^{n-1}, a_{2k+1}^{n-1}$.

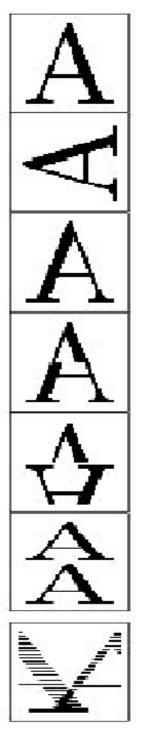
Output

For each test case:

Your program should output a single line whose contents is the minimal number m (m > 0) such that ϕ is the identity. You may assume that, for all test input, you have m < 2^{31} .

Example

Input: 256 rot- div rot div



bvsym div mix

Output: