Just Primes

This problem is really simple, or is it? Given a positive integer \mathbf{N}, calculate the minimum number of distinct primes needed such that their sum equals to \mathbf{N}. A prime number is a natural number greater than 1 that cannot be formed by multiplying two smaller natural numbers. The first few prime numbers are $2,3,5,7,11,13,17,19,23,29, \ldots$ and so on.

Input

The first line contains an integer \mathbf{T}, denoting the number of test cases. Each of the next subsequent \mathbf{T} lines contain a positive integer \mathbf{N}.

Constraints

- $1 \leq \mathrm{T} \leq 50,000$
- $1 \leq N \leq 50,000$

Output

For each test case, first print the case number followed by the minimum number of distinct primes such that their sum equals to \mathbf{N}. If \mathbf{N} cannot be represented by a summation of distinct primes, then print the case number followed by $\mathbf{- 1}$. Refer to the sample input/output for more clarity of the format.

Sample Input

10
1
2
3
10
27
100
1000
4572
4991
49999

Sample Output

Case 1: -1
Case 2: 1
Case 3: 1
Case 4: 2
Case 5: 3
Case 6: 2
Case 7: 2
Case 8: 2
Case 9: 3

Case 10: 1

Challenge

Too easy? Try the harder version here - Just Primes II

